Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

New Approaches to Complexity via Quantum Graphs (2309.12887v2)

Published 22 Sep 2023 in quant-ph, cs.CC, and math.OA

Abstract: Problems based on the structure of graphs -- for example finding cliques, independent sets, or colourings -- are of fundamental importance in classical complexity. Defining well-formulated decision problems for quantum graphs, which are an operator system generalisation of graphs, presents several technical challenges. Consequently, the connections between quantum graphs and complexity have been underexplored. In this work, we introduce and study the clique problem for quantum graphs. Our approach utilizes a well-known connection between quantum graphs and quantum channels. The inputs for our problems are presented as circuits inducing quantum channel, which implicitly determine a corresponding quantum graph. We show that, quantified over all channels, this problem is complete for QMA(2); in fact, it remains QMA(2)-complete when restricted to channels that are probabilistic mixtures of entanglement-breaking and partial trace channels. Quantified over a subset of entanglement-breaking channels, this problem becomes QMA-complete, and restricting further to deterministic or classical noisy channels gives rise to complete problems for NP and MA, respectively. In this way, we exhibit a classical complexity problem whose natural quantisation is QMA(2), rather than QMA, and provide the first problem that allows for a direct comparison of the classes QMA(2), QMA, MA, and NP by quantifying over increasingly larger families of instances. We use methods that are inspired by self-testing to provide a direct proof of QMA(2)-completeness, rather than reducing to a previously-studied complete problem. We also give a new proof of the celebrated reduction of QMA(k) to QMA(2). In parallel, we study a version of the closely-related independent set problem for quantum graphs, and provide preliminary evidence that it may be in general weaker in complexity, contrasting to the classical case.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)