Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

NTO3D: Neural Target Object 3D Reconstruction with Segment Anything (2309.12790v2)

Published 22 Sep 2023 in cs.CV

Abstract: Neural 3D reconstruction from multi-view images has recently attracted increasing attention from the community. Existing methods normally learn a neural field for the whole scene, while it is still under-explored how to reconstruct a target object indicated by users. Considering the Segment Anything Model (SAM) has shown effectiveness in segmenting any 2D images, in this paper, we propose NTO3D, a novel high-quality Neural Target Object 3D (NTO3D) reconstruction method, which leverages the benefits of both neural field and SAM. We first propose a novel strategy to lift the multi-view 2D segmentation masks of SAM into a unified 3D occupancy field. The 3D occupancy field is then projected into 2D space and generates the new prompts for SAM. This process is iterative until convergence to separate the target object from the scene. After this, we then lift the 2D features of the SAM encoder into a 3D feature field in order to improve the reconstruction quality of the target object. NTO3D lifts the 2D masks and features of SAM into the 3D neural field for high-quality neural target object 3D reconstruction. We conduct detailed experiments on several benchmark datasets to demonstrate the advantages of our method. The code will be available at: https://github.com/ucwxb/NTO3D.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube