Papers
Topics
Authors
Recent
2000 character limit reached

Total positivity and least squares problems in the Lagrange basis (2309.12695v1)

Published 22 Sep 2023 in math.NA and cs.NA

Abstract: The problem of polynomial least squares fitting in the standard Lagrange basis is addressed in this work. Although the matrices involved in the corresponding overdetermined linear systems are not totally positive, rectangular totally positive Lagrange-Vandermonde matrices are used to take advantage of total positivity in the construction of accurate algorithms to solve the considered problem. In particular, a fast and accurate algorithm to compute the bidiagonal decomposition of such rectangular totally positive matrices is crucial to solve the problem. This algorithm also allows the accurate computation of the Moore-Penrose inverse and the projection matrix of the collocation matrices involved in these problems. Numerical experiments showing the good behaviour of the proposed algorithms are included.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.