Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Total positivity and least squares problems in the Lagrange basis (2309.12695v1)

Published 22 Sep 2023 in math.NA and cs.NA

Abstract: The problem of polynomial least squares fitting in the standard Lagrange basis is addressed in this work. Although the matrices involved in the corresponding overdetermined linear systems are not totally positive, rectangular totally positive Lagrange-Vandermonde matrices are used to take advantage of total positivity in the construction of accurate algorithms to solve the considered problem. In particular, a fast and accurate algorithm to compute the bidiagonal decomposition of such rectangular totally positive matrices is crucial to solve the problem. This algorithm also allows the accurate computation of the Moore-Penrose inverse and the projection matrix of the collocation matrices involved in these problems. Numerical experiments showing the good behaviour of the proposed algorithms are included.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.