Papers
Topics
Authors
Recent
2000 character limit reached

Evidential uncertainty sampling for active learning (2309.12494v2)

Published 21 Sep 2023 in cs.LG

Abstract: Recent studies in active learning, particularly in uncertainty sampling, have focused on the decomposition of model uncertainty into reducible and irreducible uncertainties. In this paper, the aim is to simplify the computational process while eliminating the dependence on observations. Crucially, the inherent uncertainty in the labels is considered, the uncertainty of the oracles. Two strategies are proposed, sampling by Klir uncertainty, which tackles the exploration-exploitation dilemma, and sampling by evidential epistemic uncertainty, which extends the concept of reducible uncertainty within the evidential framework, both using the theory of belief functions. Experimental results in active learning demonstrate that our proposed method can outperform uncertainty sampling.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.