Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 32 tok/s Pro
2000 character limit reached

Smooth Nash Equilibria: Algorithms and Complexity (2309.12226v2)

Published 21 Sep 2023 in cs.GT, cs.DS, and cs.LG

Abstract: A fundamental shortcoming of the concept of Nash equilibrium is its computational intractability: approximating Nash equilibria in normal-form games is PPAD-hard. In this paper, inspired by the ideas of smoothed analysis, we introduce a relaxed variant of Nash equilibrium called $\sigma$-smooth Nash equilibrium, for a smoothness parameter $\sigma$. In a $\sigma$-smooth Nash equilibrium, players only need to achieve utility at least as high as their best deviation to a $\sigma$-smooth strategy, which is a distribution that does not put too much mass (as parametrized by $\sigma$) on any fixed action. We distinguish two variants of $\sigma$-smooth Nash equilibria: strong $\sigma$-smooth Nash equilibria, in which players are required to play $\sigma$-smooth strategies under equilibrium play, and weak $\sigma$-smooth Nash equilibria, where there is no such requirement. We show that both weak and strong $\sigma$-smooth Nash equilibria have superior computational properties to Nash equilibria: when $\sigma$ as well as an approximation parameter $\epsilon$ and the number of players are all constants, there is a constant-time randomized algorithm to find a weak $\epsilon$-approximate $\sigma$-smooth Nash equilibrium in normal-form games. In the same parameter regime, there is a polynomial-time deterministic algorithm to find a strong $\epsilon$-approximate $\sigma$-smooth Nash equilibrium in a normal-form game. These results stand in contrast to the optimal algorithm for computing $\epsilon$-approximate Nash equilibria, which cannot run in faster than quasipolynomial-time. We complement our upper bounds by showing that when either $\sigma$ or $\epsilon$ is an inverse polynomial, finding a weak $\epsilon$-approximate $\sigma$-smooth Nash equilibria becomes computationally intractable.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube