Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

ORTexME: Occlusion-Robust Human Shape and Pose via Temporal Average Texture and Mesh Encoding (2309.12183v1)

Published 21 Sep 2023 in cs.CV

Abstract: In 3D human shape and pose estimation from a monocular video, models trained with limited labeled data cannot generalize well to videos with occlusion, which is common in the wild videos. The recent human neural rendering approaches focusing on novel view synthesis initialized by the off-the-shelf human shape and pose methods have the potential to correct the initial human shape. However, the existing methods have some drawbacks such as, erroneous in handling occlusion, sensitive to inaccurate human segmentation, and ineffective loss computation due to the non-regularized opacity field. To address these problems, we introduce ORTexME, an occlusion-robust temporal method that utilizes temporal information from the input video to better regularize the occluded body parts. While our ORTexME is based on NeRF, to determine the reliable regions for the NeRF ray sampling, we utilize our novel average texture learning approach to learn the average appearance of a person, and to infer a mask based on the average texture. In addition, to guide the opacity-field updates in NeRF to suppress blur and noise, we propose the use of human body mesh. The quantitative evaluation demonstrates that our method achieves significant improvement on the challenging multi-person 3DPW dataset, where our method achieves 1.8 P-MPJPE error reduction. The SOTA rendering-based methods fail and enlarge the error up to 5.6 on the same dataset.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.