Performance Model for Similarity Caching (2309.12149v1)
Abstract: Similarity caching allows requests for an item to be served by a similar item. Applications include recommendation systems, multimedia retrieval, and machine learning. Recently, many similarity caching policies have been proposed, like SIM-LRU and RND-LRU, but the performance analysis of their hit rate is still wanting. In this paper, we show how to extend the popular time-to-live approximation in classic caching to similarity caching. In particular, we propose a method to estimate the hit rate of the similarity caching policy RND-LRU. Our method, the RND-TTL approximation, introduces the RND-TTL cache model and then tunes its parameters in such a way to mimic the behavior of RND-LRU. The parameter tuning involves solving a fixed point system of equations for which we provide an algorithm for numerical resolution and sufficient conditions for its convergence. Our approach for approximating the hit rate of RND-LRU is evaluated on both synthetic and real world traces.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.