Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

PEFTT: Parameter-Efficient Fine-Tuning for low-resource Tibetan pre-trained language models (2309.12109v1)

Published 21 Sep 2023 in cs.CL and cs.AI

Abstract: In this era of LLMs, the traditional training of models has become increasingly unimaginable for regular users and institutions. The exploration of efficient fine-tuning for high-resource languages on these models is an undeniable trend that is gradually gaining popularity. However, there has been very little exploration for various low-resource languages, such as Tibetan. Research in Tibetan NLP is inherently scarce and limited. While there is currently no existing LLM for Tibetan due to its low-resource nature, that day will undoubtedly arrive. Therefore, research on efficient fine-tuning for low-resource LLMs like Tibetan is highly necessary. Our research can serve as a reference to fill this crucial gap. Efficient fine-tuning strategies for pre-trained LLMs (PLMs) in Tibetan have seen minimal exploration. We conducted three types of efficient fine-tuning experiments on the publicly available TNCC-title dataset: "prompt-tuning," "Adapter lightweight fine-tuning," and "prompt-tuning + Adapter fine-tuning." The experimental results demonstrate significant improvements using these methods, providing valuable insights for advancing Tibetan language applications in the context of pre-trained models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. doi:10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423
  2. arXiv:1910.10683[cs,stat], doi:10.48550/arXiv.1910.10683. URL http://arxiv.org/abs/1910.10683
  3. arXiv:1902.00751[cs,stat]. URL http://arxiv.org/abs/1902.00751
  4. doi:10.18653/v1/2021.acl-long.353. URL https://aclanthology.org/2021.acl-long.353
  5. arXiv:2205.05638[cs], doi:10.48550/arXiv.2205.05638. URL http://arxiv.org/abs/2205.05638
  6. arXiv:2109.14076[cs], doi:10.48550/arXiv.2109.14076. URL http://arxiv.org/abs/2109.14076
  7. doi:10.18653/v1/2020.emnlp-main.617. URL https://www.aclweb.org/anthology/2020.emnlp-main.617
  8. doi:10.18653/v1/2020.coling-main.488. URL https://www.aclweb.org/anthology/2020.coling-main.488
  9. doi:10.18653/v1/2021.eacl-main.20. URL https://aclanthology.org/2021.eacl-main.20
  10. doi:10.18653/v1/2020.emnlp-main.346. URL https://www.aclweb.org/anthology/2020.emnlp-main.346
  11. doi:10.18653/v1/2021.acl-long.295. URL https://aclanthology.org/2021.acl-long.295
  12. arXiv:2102.12206[cs], doi:10.48550/arXiv.2102.12206. URL http://arxiv.org/abs/2102.12206
  13. doi:10.18653/v1/2021.emnlp-main.243. URL https://aclanthology.org/2021.emnlp-main.243
  14. doi:10.18653/v1/2022.acl-long.346. URL https://aclanthology.org/2022.acl-long.346
  15. doi:10.18653/v1/2022.acl-short.8. URL https://aclanthology.org/2022.acl-short.8
  16. doi:10.1109/SMC53654.2022.9945074. URL https://ieeexplore.ieee.org/document/9945074/
  17. doi:10.1145/3548608.3559255. URL https://doi.org/10.1145/3548608.3559255
  18. doi:10.18653/v1/2020.acl-main.747. URL https://aclanthology.org/2020.acl-main.747
  19. doi:10.18653/v1/2022.acl-demo.10. URL https://aclanthology.org/2022.acl-demo.10
  20. W. L. Taylor, “cloze procedure”: A new tool for measuring readability 30 (4) 415–433. doi:10.1177/107769905303000401. URL http://journals.sagepub.com/doi/10.1177/107769905303000401
  21. doi:10.18653/v1/2021.acl-long.568. URL https://aclanthology.org/2021.acl-long.568

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube