PEFTT: Parameter-Efficient Fine-Tuning for low-resource Tibetan pre-trained language models (2309.12109v1)
Abstract: In this era of LLMs, the traditional training of models has become increasingly unimaginable for regular users and institutions. The exploration of efficient fine-tuning for high-resource languages on these models is an undeniable trend that is gradually gaining popularity. However, there has been very little exploration for various low-resource languages, such as Tibetan. Research in Tibetan NLP is inherently scarce and limited. While there is currently no existing LLM for Tibetan due to its low-resource nature, that day will undoubtedly arrive. Therefore, research on efficient fine-tuning for low-resource LLMs like Tibetan is highly necessary. Our research can serve as a reference to fill this crucial gap. Efficient fine-tuning strategies for pre-trained LLMs (PLMs) in Tibetan have seen minimal exploration. We conducted three types of efficient fine-tuning experiments on the publicly available TNCC-title dataset: "prompt-tuning," "Adapter lightweight fine-tuning," and "prompt-tuning + Adapter fine-tuning." The experimental results demonstrate significant improvements using these methods, providing valuable insights for advancing Tibetan language applications in the context of pre-trained models.
- doi:10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423
- arXiv:1910.10683[cs,stat], doi:10.48550/arXiv.1910.10683. URL http://arxiv.org/abs/1910.10683
- arXiv:1902.00751[cs,stat]. URL http://arxiv.org/abs/1902.00751
- doi:10.18653/v1/2021.acl-long.353. URL https://aclanthology.org/2021.acl-long.353
- arXiv:2205.05638[cs], doi:10.48550/arXiv.2205.05638. URL http://arxiv.org/abs/2205.05638
- arXiv:2109.14076[cs], doi:10.48550/arXiv.2109.14076. URL http://arxiv.org/abs/2109.14076
- doi:10.18653/v1/2020.emnlp-main.617. URL https://www.aclweb.org/anthology/2020.emnlp-main.617
- doi:10.18653/v1/2020.coling-main.488. URL https://www.aclweb.org/anthology/2020.coling-main.488
- doi:10.18653/v1/2021.eacl-main.20. URL https://aclanthology.org/2021.eacl-main.20
- doi:10.18653/v1/2020.emnlp-main.346. URL https://www.aclweb.org/anthology/2020.emnlp-main.346
- doi:10.18653/v1/2021.acl-long.295. URL https://aclanthology.org/2021.acl-long.295
- arXiv:2102.12206[cs], doi:10.48550/arXiv.2102.12206. URL http://arxiv.org/abs/2102.12206
- doi:10.18653/v1/2021.emnlp-main.243. URL https://aclanthology.org/2021.emnlp-main.243
- doi:10.18653/v1/2022.acl-long.346. URL https://aclanthology.org/2022.acl-long.346
- doi:10.18653/v1/2022.acl-short.8. URL https://aclanthology.org/2022.acl-short.8
- doi:10.1109/SMC53654.2022.9945074. URL https://ieeexplore.ieee.org/document/9945074/
- doi:10.1145/3548608.3559255. URL https://doi.org/10.1145/3548608.3559255
- doi:10.18653/v1/2020.acl-main.747. URL https://aclanthology.org/2020.acl-main.747
- doi:10.18653/v1/2022.acl-demo.10. URL https://aclanthology.org/2022.acl-demo.10
- W. L. Taylor, “cloze procedure”: A new tool for measuring readability 30 (4) 415–433. doi:10.1177/107769905303000401. URL http://journals.sagepub.com/doi/10.1177/107769905303000401
- doi:10.18653/v1/2021.acl-long.568. URL https://aclanthology.org/2021.acl-long.568
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.