Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Benchmarking quantized LLaMa-based models on the Brazilian Secondary School Exam (2309.12071v1)

Published 21 Sep 2023 in cs.AI and cs.CL

Abstract: Although LLMs represent a revolution in the way we interact with computers, allowing the construction of complex questions and the ability to reason over a sequence of statements, their use is restricted due to the need for dedicated hardware for execution. In this study, we evaluate the performance of LLMs based on the 7 and 13 billion LLaMA models, subjected to a quantization process and run on home hardware. The models considered were Alpaca, Koala, and Vicuna. To evaluate the effectiveness of these models, we developed a database containing 1,006 questions from the ENEM (Brazilian National Secondary School Exam). Our analysis revealed that the best performing models achieved an accuracy of approximately 46% for the original texts of the Portuguese questions and 49% on their English translations. In addition, we evaluated the computational efficiency of the models by measuring the time required for execution. On average, the 7 and 13 billion LLMs took approximately 20 and 50 seconds, respectively, to process the queries on a machine equipped with an AMD Ryzen 5 3600x processor

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.