Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Uncertainty-driven Exploration Strategies for Online Grasp Learning (2309.12038v2)

Published 21 Sep 2023 in cs.RO and cs.AI

Abstract: Existing grasp prediction approaches are mostly based on offline learning, while, ignoring the exploratory grasp learning during online adaptation to new picking scenarios, i.e., objects that are unseen or out-of-domain (OOD), camera and bin settings, etc. In this paper, we present an uncertainty-based approach for online learning of grasp predictions for robotic bin picking. Specifically, the online learning algorithm with an effective exploration strategy can significantly improve its adaptation performance to unseen environment settings. To this end, we first propose to formulate online grasp learning as an RL problem that will allow us to adapt both grasp reward prediction and grasp poses. We propose various uncertainty estimation schemes based on Bayesian uncertainty quantification and distributional ensembles. We carry out evaluations on real-world bin picking scenes of varying difficulty. The objects in the bin have various challenging physical and perceptual characteristics that can be characterized by semi- or total transparency, and irregular or curved surfaces. The results of our experiments demonstrate a notable improvement of grasp performance in comparison to conventional online learning methods which incorporate only naive exploration strategies. Video: https://youtu.be/fPKOrjC2QrU

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube