Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Robust Sensor Fusion for Indoor Wireless Localization (2309.11917v2)

Published 21 Sep 2023 in eess.SY and cs.SY

Abstract: Location knowledge in indoor environment using Indoor Positioning Systems (IPS) has become very useful and popular in recent years. Indoor wireless localization suffers from severe multi-path fading and non-line-of-sight conditions. This paper presents a novel indoor localization framework based on sensor fusion of Zigbee Wireless Sensor Networks (WSN) using Received Signal Strength (RSS). The unknown position is equipped with two or more mobile nodes. The range between two mobile nodes is fixed as priori. The attitude (roll, pitch, and yaw) of the mobile node are measured by inertial sensors (ISs). Then the angle and the range between any two nodes can be obtained, and thus the path between the two nodes can be modeled as a curve. Through an efficient cooperation between two or more mobile nodes, this framework effectively exploits the RSS techniques. This constraint help improve the positioning accuracy. Theoretical analysis on localization distortion and Monte Carlo simulations shows that the proposed cooperative strategy of multiple nodes with extended Kalman filter (EKF) achieves significantly higher positioning accuracy than the existing systems, especially in heavily obstructed scenarios.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)