Papers
Topics
Authors
Recent
2000 character limit reached

Micromechanics-Informed Parametric Deep Material Network for Physics Behavior Prediction of Heterogeneous Materials with a Varying Morphology (2309.11814v3)

Published 21 Sep 2023 in cs.CE

Abstract: Deep Material Network (DMN) has recently emerged as a data-driven surrogate model for heterogeneous materials. Given a particular microstructural morphology, the effective linear and nonlinear behaviors can be successfully approximated by such physics-based neural-network like architecture. In this work, a novel micromechanics-informed parametric DMN (MIpDMN) architecture is proposed for multiscale materials with a varying microstructure characterized by several parameters. A single-layer feedforward neural network is used to account for the dependence of DMN fitting parameters on the microstructural ones. Micromechanical constraints are prescribed both on the architecture and the outputs of this new neural network. The proposed MIpDMN is also recast in a multiple physics setting, where physical properties other than the mechanical ones can also be predicted. In the numerical simulations conducted on three parameterized microstructures, MIpDMN demonstrates satisfying generalization capabilities when morphology varies. The effective behaviors of such parametric multiscale materials can thus be predicted and encoded by MIpDMN with high accuracy and efficiency.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. doi:10.1007/s11831-008-9028-8.
  2. doi:10.1016/j.jcp.2016.10.070.
  3. doi:10.1038/s41563-020-00913-0.
  4. doi:10.1016/s0266-3538(98)00120-1.
  5. doi:10.1016/j.compscitech.2003.11.009.
  6. doi:10.1016/j.cam.2009.08.077.
  7. doi:10.1016/j.cma.2018.09.020.
  8. doi:10.1007/978-3-030-87312-7_27.
  9. doi:10.1016/j.jmps.2019.03.004.
  10. doi:10.1016/j.jmps.2020.103984.
  11. doi:10.1016/j.cma.2021.113952.
  12. doi:10.1007/s00466-021-02131-0.
  13. doi:10.1061/jenmdt.emeng-6945.
  14. doi:10.1016/j.cma.2020.112913.
  15. doi:10.1016/j.cma.2021.113914.
  16. doi:10.1007/s00419-022-02213-2.
  17. doi:10.1016/j.ijplas.2022.103484.
  18. doi:10.1016/j.compstruct.2021.114058.
  19. doi:10.1016/j.euromechsol.2021.104384.
  20. doi:10.1016/j.cma.2021.114300.
  21. doi:10.1007/978-1-4684-9286-6.
  22. doi:10.1017/cbo9780511613357.
  23. doi:10.1016/0022-5096(62)90004-2.
  24. doi:10.1007/bf00280908.
  25. doi:10.1007/s00466-019-01704-4.
  26. doi:10.1016/j.cma.2022.115197.
  27. doi:10.1122/1.549945.
  28. doi:10.1016/j.camwa.2015.08.025.
  29. doi:10.1016/0020-7225(70)90066-2.
  30. doi:10.1007/978-1-4613-8919-4_4.
  31. doi:10.1016/j.scriptamat.2005.06.013.
  32. doi:10.1016/j.actamat.2011.06.051.
  33. doi:10.1038/s41598-019-50144-w.
  34. doi:10.1016/j.compositesb.2021.109282.
  35. doi:10.1016/j.jcp.2018.10.045.
  36. doi:10.1177/10812865211057602.
  37. doi:10.1016/j.compscitech.2016.04.009.
  38. doi:10.1007/s10659-022-09977-2.
  39. doi:10.1016/j.commatsci.2004.09.041.
  40. doi:10.1109/cdc.2008.4739058.
  41. doi:10.1080/00401706.2000.10485979.
  42. doi:10.1016/0041-5553(67)90144-9.
  43. doi:10.1016/j.cma.2022.114790.
  44. doi:10.1109/icnn.1993.298623.
  45. doi:10.1016/b978-0-12-819005-0.00008-3.
  46. doi:10.1016/j.advengsoft.2019.03.005.
  47. doi:10.1016/j.cma.2017.11.005.
  48. doi:10.1016/j.euromechsol.2021.104247.
  49. doi:10.1016/j.ijplas.2009.06.003.
  50. doi:10.1002/nme.1620010306.
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.