Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Emotion-Aware Prosodic Phrasing for Expressive Text-to-Speech (2309.11724v1)

Published 21 Sep 2023 in cs.AI

Abstract: Prosodic phrasing is crucial to the naturalness and intelligibility of end-to-end Text-to-Speech (TTS). There exist both linguistic and emotional prosody in natural speech. As the study of prosodic phrasing has been linguistically motivated, prosodic phrasing for expressive emotion rendering has not been well studied. In this paper, we propose an emotion-aware prosodic phrasing model, termed \textit{EmoPP}, to mine the emotional cues of utterance accurately and predict appropriate phrase breaks. We first conduct objective observations on the ESD dataset to validate the strong correlation between emotion and prosodic phrasing. Then the objective and subjective evaluations show that the EmoPP outperforms all baselines and achieves remarkable performance in terms of emotion expressiveness. The audio samples and the code are available at \url{https://github.com/AI-S2-Lab/EmoPP}.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (3)

Github Logo Streamline Icon: https://streamlinehq.com