Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Cycle Partitions in Dense Regular Digraphs and Oriented Graphs (2309.11677v3)

Published 20 Sep 2023 in math.CO

Abstract: A conjecture of Jackson from 1981 states that every $d$-regular oriented graph on $n$ vertices with $n\leq 4d+1$ is Hamiltonian. We prove this conjecture for sufficiently large $n$. In fact we prove a more general result that for all $\alpha>0$, there exists $n_0=n_0(\alpha)$ such that every $d$-regular digraph on $n\geq n_0$ vertices with $d \geq \alpha n $ can be covered by at most $n/(d+1)$ vertex-disjoint cycles, and moreover that if $G$ is an oriented graph, then at most $n/(2d+1)$ cycles suffice.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube