Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Cycle Partitions in Dense Regular Digraphs and Oriented Graphs (2309.11677v3)

Published 20 Sep 2023 in math.CO

Abstract: A conjecture of Jackson from 1981 states that every $d$-regular oriented graph on $n$ vertices with $n\leq 4d+1$ is Hamiltonian. We prove this conjecture for sufficiently large $n$. In fact we prove a more general result that for all $\alpha>0$, there exists $n_0=n_0(\alpha)$ such that every $d$-regular digraph on $n\geq n_0$ vertices with $d \geq \alpha n $ can be covered by at most $n/(d+1)$ vertex-disjoint cycles, and moreover that if $G$ is an oriented graph, then at most $n/(2d+1)$ cycles suffice.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com