Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Tutorial on a Lyapunov-Based Approach to the Analysis of Iterative Optimization Algorithms (2309.11377v1)

Published 20 Sep 2023 in math.OC, cs.SY, and eess.SY

Abstract: Iterative gradient-based optimization algorithms are widely used to solve difficult or large-scale optimization problems. There are many algorithms to choose from, such as gradient descent and its accelerated variants such as Polyak's Heavy Ball method or Nesterov's Fast Gradient method. It has long been observed that iterative algorithms can be viewed as dynamical systems, and more recently, as robust controllers. Here, the "uncertainty" in the dynamics is the gradient of the function being optimized. Therefore, worst-case or average-case performance can be analyzed using tools from robust control theory, such as integral quadratic constraints (IQCs). In this tutorial paper, we show how such an analysis can be carried out using an alternative Lyapunov-based approach. This approach recovers the same performance bounds as with IQCs, but with the added benefit of constructing a Lyapunov function.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.