Papers
Topics
Authors
Recent
2000 character limit reached

CoT-BERT: Enhancing Unsupervised Sentence Representation through Chain-of-Thought (2309.11143v4)

Published 20 Sep 2023 in cs.CL and cs.AI

Abstract: Unsupervised sentence representation learning aims to transform input sentences into fixed-length vectors enriched with intricate semantic information while obviating the reliance on labeled data. Recent strides within this domain have been significantly propelled by breakthroughs in contrastive learning and prompt engineering. Despite these advancements, the field has reached a plateau, leading some researchers to incorporate external components to enhance the quality of sentence embeddings. Such integration, though beneficial, complicates solutions and inflates demands for computational resources. In response to these challenges, this paper presents CoT-BERT, an innovative method that harnesses the progressive thinking of Chain-of-Thought reasoning to tap into the latent potential of pre-trained models like BERT. Additionally, we develop an advanced contrastive learning loss function and propose a novel template denoising strategy. Rigorous experimentation demonstrates that CoT-BERT surpasses a range of well-established baselines by relying exclusively on the intrinsic strengths of pre-trained models.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub