Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

On the different regimes of Stochastic Gradient Descent (2309.10688v4)

Published 19 Sep 2023 in cs.LG, cond-mat.dis-nn, and stat.ML

Abstract: Modern deep networks are trained with stochastic gradient descent (SGD) whose key hyperparameters are the number of data considered at each step or batch size $B$, and the step size or learning rate $\eta$. For small $B$ and large $\eta$, SGD corresponds to a stochastic evolution of the parameters, whose noise amplitude is governed by the ''temperature'' $T\equiv \eta/B$. Yet this description is observed to break down for sufficiently large batches $B\geq B*$, or simplifies to gradient descent (GD) when the temperature is sufficiently small. Understanding where these cross-overs take place remains a central challenge. Here, we resolve these questions for a teacher-student perceptron classification model and show empirically that our key predictions still apply to deep networks. Specifically, we obtain a phase diagram in the $B$-$\eta$ plane that separates three dynamical phases: (i) a noise-dominated SGD governed by temperature, (ii) a large-first-step-dominated SGD and (iii) GD. These different phases also correspond to different regimes of generalization error. Remarkably, our analysis reveals that the batch size $B*$ separating regimes (i) and (ii) scale with the size $P$ of the training set, with an exponent that characterizes the hardness of the classification problem.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.