Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EchoPrompt: Instructing the Model to Rephrase Queries for Improved In-context Learning (2309.10687v3)

Published 16 Sep 2023 in cs.CL

Abstract: LLMs are achieving impressive performance on various tasks by aggressively adopting inference-time prompting techniques, such as zero-shot and few-shot prompting. In this work, we introduce EchoPrompt, a simple yet effective approach that prompts the model to rephrase its queries before answering them. EchoPrompt is adapted for both zero-shot and few-shot in-context learning with standard and chain-of-thought prompting. Experimental results show that EchoPrompt yields substantial improvements across all these settings for four families of causal LLMs. These improvements are observed across various numerical reasoning (e.g. GSM8K, SVAMP), reading comprehension (e.g. DROP), and logical reasoning (e.g. Coin Flipping) tasks. On average, EchoPrompt improves the Zero-shot-CoT performance of code-davinci-002 by 5% in numerical tasks and 13% in reading comprehension tasks. We investigate the factors contributing to EchoPrompt's effectiveness through ablation studies, which reveal that both the original query and the model-generated rephrased version are instrumental in its performance gains. Our empirical results indicate that EchoPrompt is an effective technique that enhances in-context learning performance. We recommend incorporating EchoPrompt into various baseline prompting strategies to achieve performance boosts.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Rajasekhar Reddy Mekala (1 paper)
  2. Yasaman Razeghi (8 papers)
  3. Sameer Singh (96 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.