Forgedit: Text Guided Image Editing via Learning and Forgetting (2309.10556v2)
Abstract: Text-guided image editing on real or synthetic images, given only the original image itself and the target text prompt as inputs, is a very general and challenging task. It requires an editing model to estimate by itself which part of the image should be edited, and then perform either rigid or non-rigid editing while preserving the characteristics of original image. In this paper, we design a novel text-guided image editing method, named as Forgedit. First, we propose a vision-language joint optimization framework capable of reconstructing the original image in 30 seconds, much faster than previous SOTA and much less overfitting. Then we propose a novel vector projection mechanism in text embedding space of Diffusion Models, which is capable to control the identity similarity and editing strength seperately. Finally, we discovered a general property of UNet in Diffusion Models, i.e., Unet encoder learns space and structure, Unet decoder learns appearance and identity. With such a property, we design forgetting mechanisms to successfully tackle the fatal and inevitable overfitting issues when fine-tuning Diffusion Models on one image, thus significantly boosting the editing capability of Diffusion Models. Our method, Forgedit, built on Stable Diffusion, achieves new state-of-the-art results on the challenging text-guided image editing benchmark: TEdBench, surpassing the previous SOTA methods such as Imagic with Imagen, in terms of both CLIP score and LPIPS score. Codes are available at https://github.com/witcherofresearch/Forgedit
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.