Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Geometric structure of shallow neural networks and constructive ${\mathcal L}^2$ cost minimization (2309.10370v2)

Published 19 Sep 2023 in cs.LG, cs.AI, math-ph, math.MP, math.OC, and stat.ML

Abstract: In this paper, we approach the problem of cost (loss) minimization in underparametrized shallow neural networks through the explicit construction of upper bounds, without any use of gradient descent. A key focus is on elucidating the geometric structure of approximate and precise minimizers. We consider shallow neural networks with one hidden layer, a ReLU activation function, an ${\mathcal L}2$ Schatten class (or Hilbert-Schmidt) cost function, input space ${\mathbb R}M$, output space ${\mathbb R}Q$ with $Q\leq M$, and training input sample size $N>QM$ that can be arbitrarily large. We prove an upper bound on the minimum of the cost function of order $O(\delta_P)$ where $\delta_P$ measures the signal to noise ratio of training inputs. In the special case $M=Q$, we explicitly determine an exact degenerate local minimum of the cost function, and show that the sharp value differs from the upper bound obtained for $Q\leq M$ by a relative error $O(\delta_P2)$. The proof of the upper bound yields a constructively trained network; we show that it metrizes a particular $Q$-dimensional subspace in the input space ${\mathbb R}M$. We comment on the characterization of the global minimum of the cost function in the given context.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets