Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Geometric structure of shallow neural networks and constructive ${\mathcal L}^2$ cost minimization (2309.10370v2)

Published 19 Sep 2023 in cs.LG, cs.AI, math-ph, math.MP, math.OC, and stat.ML

Abstract: In this paper, we approach the problem of cost (loss) minimization in underparametrized shallow neural networks through the explicit construction of upper bounds, without any use of gradient descent. A key focus is on elucidating the geometric structure of approximate and precise minimizers. We consider shallow neural networks with one hidden layer, a ReLU activation function, an ${\mathcal L}2$ Schatten class (or Hilbert-Schmidt) cost function, input space ${\mathbb R}M$, output space ${\mathbb R}Q$ with $Q\leq M$, and training input sample size $N>QM$ that can be arbitrarily large. We prove an upper bound on the minimum of the cost function of order $O(\delta_P)$ where $\delta_P$ measures the signal to noise ratio of training inputs. In the special case $M=Q$, we explicitly determine an exact degenerate local minimum of the cost function, and show that the sharp value differs from the upper bound obtained for $Q\leq M$ by a relative error $O(\delta_P2)$. The proof of the upper bound yields a constructively trained network; we show that it metrizes a particular $Q$-dimensional subspace in the input space ${\mathbb R}M$. We comment on the characterization of the global minimum of the cost function in the given context.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: