Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Hardness results for decoding the surface code with Pauli noise (2309.10331v5)

Published 19 Sep 2023 in quant-ph and cs.CC

Abstract: Real quantum computers will be subject to complicated, qubit-dependent noise, instead of simple noise such as depolarizing noise with the same strength for all qubits. We can do quantum error correction more effectively if our decoding algorithms take into account this prior information about the specific noise present. This motivates us to consider the complexity of surface code decoding where the input to the decoding problem is not only the syndrome-measurement results, but also a noise model in the form of probabilities of single-qubit Pauli errors for every qubit. In this setting, we show that quantum maximum likelihood decoding (QMLD) and degenerate quantum maximum likelihood decoding (DQMLD) for the surface code are NP-hard and #P-hard, respectively. We reduce directly from SAT for QMLD, and from #SAT for DQMLD, by showing how to transform a boolean formula into a qubit-dependent Pauli noise model and set of syndromes that encode the satisfiability properties of the formula. We also give hardness of approximation results for QMLD and DQMLD. These are worst-case hardness results that do not contradict the empirical fact that many efficient surface code decoders are correct in the average case (i.e., for most sets of syndromes and for most reasonable noise models). These hardness results are nicely analogous with the known hardness results for QMLD and DQMLD for arbitrary stabilizer codes with independent $X$ and $Z$ noise.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.