Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multi-dimension Queried and Interacting Network for Stereo Image Deraining (2309.10319v1)

Published 19 Sep 2023 in cs.CV

Abstract: Eliminating the rain degradation in stereo images poses a formidable challenge, which necessitates the efficient exploitation of mutual information present between the dual views. To this end, we devise MQINet, which employs multi-dimension queries and interactions for stereo image deraining. More specifically, our approach incorporates a context-aware dimension-wise queried block (CDQB). This module leverages dimension-wise queries that are independent of the input features and employs global context-aware attention (GCA) to capture essential features while avoiding the entanglement of redundant or irrelevant information. Meanwhile, we introduce an intra-view physics-aware attention (IPA) based on the inverse physical model of rainy images. IPA extracts shallow features that are sensitive to the physics of rain degradation, facilitating the reduction of rain-related artifacts during the early learning period. Furthermore, we integrate a cross-view multi-dimension interacting attention mechanism (CMIA) to foster comprehensive feature interaction between the two views across multiple dimensions. Extensive experimental evaluations demonstrate the superiority of our model over EPRRNet and StereoIRR, achieving respective improvements of 4.18 dB and 0.45 dB in PSNR. Code and models are available at \url{https://github.com/chdwyb/MQINet}.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube