Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Who to Trust, How and Why: Untangling AI Ethics Principles, Trustworthiness and Trust (2309.10318v1)

Published 19 Sep 2023 in cs.AI and cs.CY

Abstract: We present an overview of the literature on trust in AI and AI trustworthiness and argue for the need to distinguish these concepts more clearly and to gather more empirically evidence on what contributes to people s trusting behaviours. We discuss that trust in AI involves not only reliance on the system itself, but also trust in the developers of the AI system. AI ethics principles such as explainability and transparency are often assumed to promote user trust, but empirical evidence of how such features actually affect how users perceive the system s trustworthiness is not as abundance or not that clear. AI systems should be recognised as socio-technical systems, where the people involved in designing, developing, deploying, and using the system are as important as the system for determining whether it is trustworthy. Without recognising these nuances, trust in AI and trustworthy AI risk becoming nebulous terms for any desirable feature for AI systems.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.