Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 116 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Spatz: Clustering Compact RISC-V-Based Vector Units to Maximize Computing Efficiency (2309.10137v2)

Published 18 Sep 2023 in cs.AR

Abstract: The ever-increasing computational and storage requirements of modern applications and the slowdown of technology scaling pose major challenges to designing and implementing efficient computer architectures. To mitigate the bottlenecks of typical processor-based architectures on both the instruction and data sides of the memory, we present Spatz, a compact 64-bit floating-point-capable vector processor based on RISC-V's Vector Extension Zve64d. Using Spatz as the main Processing Element (PE), we design an open-source dual-core vector processor architecture based on a modular and scalable cluster sharing a Scratchpad Memory (SCM). Unlike typical vector processors, whose Vector Register Files (VRFs) are hundreds of KiB large, we prove that Spatz can achieve peak energy efficiency with a latch-based VRF of only 2 KiB. An implementation of the Spatz-based cluster in GlobalFoundries' 12LPP process with eight double-precision Floating Point Units (FPUs) achieves an FPU utilization just 3.4% lower than the ideal upper bound on a double-precision, floating-point matrix multiplication. The cluster reaches 7.7 FMA/cycle, corresponding to 15.7 DP-GFLOPS and 95.7 DP-GFLOPS/W at 1 GHz and nominal operating conditions (TT, 0.80V, 25C), with more than 55% of the power spent on the FPUs. Furthermore, the optimally-balanced Spatz-based cluster reaches a 95.0% FPU utilization (7.6 FMA/cycle), 15.2 DP-GFLOPS, and 99.3 DP-GFLOPS/W (61% of the power spent in the FPU) on a 2D workload with a 7x7 kernel, resulting in an outstanding area/energy efficiency of 171 DP-GFLOPS/W/mm2. At equi-area, the computing cluster built upon compact vector processors reaches a 30% higher energy efficiency than a cluster with the same FPU count built upon scalar cores specialized for stream-based floating-point computation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com