Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Neural Parametric Surfaces for Shape Modeling (2309.09911v1)

Published 18 Sep 2023 in cs.GR

Abstract: The recent surge of utilizing deep neural networks for geometric processing and shape modeling has opened up exciting avenues. However, there is a conspicuous lack of research efforts on using powerful neural representations to extend the capabilities of parametric surfaces, which are the prevalent surface representations in product design, CAD/CAM, and computer animation. We present Neural Parametric Surfaces, the first piecewise neural surface representation that allows coarse patch layouts of arbitrary $n$-sided surface patches to model complex surface geometries with high precision, offering greater flexibility over traditional parametric surfaces. By construction, this new surface representation guarantees $G0$ continuity between adjacent patches and empirically achieves $G1$ continuity, which cannot be attained by existing neural patch-based methods. The key ingredient of our neural parametric surface is a learnable feature complex $\mathcal{C}$ that is embedded in a high-dimensional space $\mathbb{R}D$ and topologically equivalent to the patch layout of the surface; each face cell of the complex is defined by interpolating feature vectors at its vertices. The learned feature complex is mapped by an MLP-encoded function $f:\mathcal{C} \rightarrow \mathcal{S}$ to produce the neural parametric surface $\mathcal{S}$. We present a surface fitting algorithm that optimizes the feature complex $\mathcal{C}$ and trains the neural mapping $f$ to reconstruct given target shapes with high accuracy. We further show that the proposed representation along with a compact-size neural net can learn a plausible shape space from a shape collection, which can be used for shape interpolation or shape completion from noisy and incomplete input data. Extensive experiments show that neural parametric surfaces offer greater modeling capabilities than traditional parametric surfaces.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.