Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Privileged to Predicted: Towards Sensorimotor Reinforcement Learning for Urban Driving (2309.09756v1)

Published 18 Sep 2023 in cs.RO and cs.CV

Abstract: Reinforcement Learning (RL) has the potential to surpass human performance in driving without needing any expert supervision. Despite its promise, the state-of-the-art in sensorimotor self-driving is dominated by imitation learning methods due to the inherent shortcomings of RL algorithms. Nonetheless, RL agents are able to discover highly successful policies when provided with privileged ground truth representations of the environment. In this work, we investigate what separates privileged RL agents from sensorimotor agents for urban driving in order to bridge the gap between the two. We propose vision-based deep learning models to approximate the privileged representations from sensor data. In particular, we identify aspects of state representation that are crucial for the success of the RL agent such as desired route generation and stop zone prediction, and propose solutions to gradually develop less privileged RL agents. We also observe that bird's-eye-view models trained on offline datasets do not generalize to online RL training due to distribution mismatch. Through rigorous evaluation on the CARLA simulation environment, we shed light on the significance of the state representations in RL for autonomous driving and point to unresolved challenges for future research.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.