Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Optimal Robust Control of Connected Vehicles in Mixed Traffic Flow (2309.09734v1)

Published 18 Sep 2023 in eess.SY and cs.SY

Abstract: Connected and automated vehicles (CAVs) technologies promise to attenuate undesired traffic disturbances. However, in mixed traffic where human-driven vehicles (HDVs) also exist, the nonlinear human-driving behavior has brought critical challenges for effective CAV control. This paper employs the policy iteration method to learn the optimal robust controller for nonlinear mixed traffic systems. Precisely, we consider the H_infty control framework and formulate it as a zero-sum game, the equivalent condition for whose solution is converted into a Hamilton-Jacobi inequality with a Hamiltonian constraint. Then, a policy iteration algorithm is designed to generate stabilizing controllers with desired attenuation performance. Based on the updated robust controller, the attenuation level is further optimized in sum of squares program by leveraging the gap of the Hamiltonian constraint. Simulation studies verify that the obtained controller enables the CAVs to dampen traffic perturbations and smooth traffic flow.

Citations (1)

Summary

We haven't generated a summary for this paper yet.