Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

LLM4Jobs: Unsupervised occupation extraction and standardization leveraging Large Language Models (2309.09708v2)

Published 18 Sep 2023 in cs.CL and cs.AI

Abstract: Automated occupation extraction and standardization from free-text job postings and resumes are crucial for applications like job recommendation and labor market policy formation. This paper introduces LLM4Jobs, a novel unsupervised methodology that taps into the capabilities of LLMs for occupation coding. LLM4Jobs uniquely harnesses both the natural language understanding and generation capacities of LLMs. Evaluated on rigorous experimentation on synthetic and real-world datasets, we demonstrate that LLM4Jobs consistently surpasses unsupervised state-of-the-art benchmarks, demonstrating its versatility across diverse datasets and granularities. As a side result of our work, we present both synthetic and real-world datasets, which may be instrumental for subsequent research in this domain. Overall, this investigation highlights the promise of contemporary LLMs for the intricate task of occupation extraction and standardization, laying the foundation for a robust and adaptable framework relevant to both research and industrial contexts.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)