Papers
Topics
Authors
Recent
2000 character limit reached

GHNet:Learning GNSS Heading from Velocity Measurements (2309.09696v1)

Published 18 Sep 2023 in cs.RO

Abstract: By utilizing global navigation satellite system (GNSS) position and velocity measurements, the fusion between the GNSS and the inertial navigation system provides accurate and robust navigation information. When considering land vehicles,like autonomous ground vehicles,off-road vehicles or mobile robots,a GNSS-based heading angle measurement can be obtained and used in parallel to the position measurement to bound the heading angle drift. Yet, at low vehicle speeds (less than 2m/s) such a model-based heading measurement fails to provide satisfactory performance. This paper proposes GHNet, a deep-learning framework capable of accurately regressing the heading angle for vehicles operating at low speeds. We demonstrate that GHNet outperforms the current model-based approach for simulation and experimental datasets.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.