Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Getting Trapped in Amazon's "Iliad Flow": A Foundation for the Temporal Analysis of Dark Patterns (2309.09635v2)

Published 18 Sep 2023 in cs.HC and cs.CY

Abstract: Dark patterns are ubiquitous in digital systems, impacting users throughout their journeys on many popular apps and websites. While substantial efforts from the research community in the last five years have led to consolidated taxonomies of dark patterns, including an emerging ontology, most applications of these descriptors have been focused on analysis of static images or as isolated pattern types. In this paper, we present a case study of Amazon Prime's "Iliad Flow" to illustrate the interplay of dark patterns across a user journey, grounded in insights from a US Federal Trade Commission complaint against the company. We use this case study to lay the groundwork for a methodology of Temporal Analysis of Dark Patterns (TADP), including considerations for characterization of individual dark patterns across a user journey, combinatorial effects of multiple dark patterns types, and implications for expert detection and automated detection.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.