Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 225 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Coarse-Graining with Equivariant Neural Networks: A Path Towards Accurate and Data-Efficient Models (2309.09290v2)

Published 17 Sep 2023 in physics.chem-ph

Abstract: Machine learning has recently entered into the mainstream of coarse-grained (CG) molecular modeling and simulation. While a variety of methods for incorporating deep learning into these models exist, many of them involve training neural networks to act directly as the CG force field. This has several benefits, the most significant of which is accuracy. Neural networks can inherently incorporate multi-body effects during the calculation of CG forces, and a well-trained neural network force field outperforms pairwise basis sets generated from essentially any methodology. However, this comes at a significant cost. First, these models are typically slower than pairwise force fields even when accounting for specialized hardware which accelerates the training and integration of such networks. The second, and the focus of this paper, is the need for the considerable amount of data needed to train such force fields. It is common to use 10s of microseconds of molecular dynamics data to train a single CG model, which approaches the point of eliminating the CG models usefulness in the first place. As we investigate in this work, this data-hunger trap from neural networks for predicting molecular energies and forces can be remediated in part by incorporating equivariant convolutional operations. We demonstrate that for CG water, networks which incorporate equivariant convolutional operations can produce functional models using datasets as small as a single frame of reference data, while networks without these operations cannot.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.