Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Sound Source Distance Estimation in Diverse and Dynamic Acoustic Conditions (2309.09288v1)

Published 17 Sep 2023 in cs.SD and eess.AS

Abstract: Localizing a moving sound source in the real world involves determining its direction-of-arrival (DOA) and distance relative to a microphone. Advancements in DOA estimation have been facilitated by data-driven methods optimized with large open-source datasets with microphone array recordings in diverse environments. In contrast, estimating a sound source's distance remains understudied. Existing approaches assume recordings by non-coincident microphones to use methods that are susceptible to differences in room reverberation. We present a CRNN able to estimate the distance of moving sound sources across multiple datasets featuring diverse rooms, outperforming a recently-published approach. We also characterize our model's performance as a function of sound source distance and different training losses. This analysis reveals optimal training using a loss that weighs model errors as an inverse function of the sound source true distance. Our study is the first to demonstrate that sound source distance estimation can be performed across diverse acoustic conditions using deep learning.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.