Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 133 tok/s
Gemini 3.0 Pro 55 tok/s Pro
Gemini 2.5 Flash 164 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Enhancing Quantised End-to-End ASR Models via Personalisation (2309.09136v1)

Published 17 Sep 2023 in cs.SD, cs.AI, and eess.AS

Abstract: Recent end-to-end automatic speech recognition (ASR) models have become increasingly larger, making them particularly challenging to be deployed on resource-constrained devices. Model quantisation is an effective solution that sometimes causes the word error rate (WER) to increase. In this paper, a novel strategy of personalisation for a quantised model (PQM) is proposed, which combines speaker adaptive training (SAT) with model quantisation to improve the performance of heavily compressed models. Specifically, PQM uses a 4-bit NormalFloat Quantisation (NF4) approach for model quantisation and low-rank adaptation (LoRA) for SAT. Experiments have been performed on the LibriSpeech and the TED-LIUM 3 corpora. Remarkably, with a 7x reduction in model size and 1% additional speaker-specific parameters, 15.1% and 23.3% relative WER reductions were achieved on quantised Whisper and Conformer-based attention-based encoder-decoder ASR models respectively, comparing to the original full precision models.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.