Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Using Reinforcement Learning to Simplify Mealtime Insulin Dosing for People with Type 1 Diabetes: In-Silico Experiments (2309.09125v1)

Published 17 Sep 2023 in cs.AI

Abstract: People with type 1 diabetes (T1D) struggle to calculate the optimal insulin dose at mealtime, especially when under multiple daily injections (MDI) therapy. Effectively, they will not always perform rigorous and precise calculations, but occasionally, they might rely on intuition and previous experience. Reinforcement learning (RL) has shown outstanding results in outperforming humans on tasks requiring intuition and learning from experience. In this work, we propose an RL agent that recommends the optimal meal-accompanying insulin dose corresponding to a qualitative meal (QM) strategy that does not require precise carbohydrate counting (CC) (e.g., a usual meal at noon.). The agent is trained using the soft actor-critic approach and comprises long short-term memory (LSTM) neurons. For training, eighty virtual subjects (VS) of the FDA-accepted UVA/Padova T1D adult population were simulated using MDI therapy and QM strategy. For validation, the remaining twenty VS were examined in 26-week scenarios, including intra- and inter-day variabilities in glucose. \textit{In-silico} results showed that the proposed RL approach outperforms a baseline run-to-run approach and can replace the standard CC approach. Specifically, after 26 weeks, the time-in-range ($70-180$mg/dL) and time-in-hypoglycemia ($<70$mg/dL) were $73.1\pm11.6$% and $ 2.0\pm 1.8$% using the RL-optimized QM strategy compared to $70.6\pm14.8$% and $ 1.5\pm 1.5$% using CC. Such an approach can simplify diabetes treatment, resulting in improved quality of life and glycemic outcomes.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.