Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Temporal Smoothness Regularisers for Neural Link Predictors (2309.09045v2)

Published 16 Sep 2023 in cs.LG

Abstract: Most algorithms for representation learning and link prediction on relational data are designed for static data. However, the data to which they are applied typically evolves over time, including online social networks or interactions between users and items in recommender systems. This is also the case for graph-structured knowledge bases -- knowledge graphs -- which contain facts that are valid only for specific points in time. In such contexts, it becomes crucial to correctly identify missing links at a precise time point, i.e. the temporal prediction link task. Recently, Lacroix et al. and Sadeghian et al. proposed a solution to the problem of link prediction for knowledge graphs under temporal constraints inspired by the canonical decomposition of 4-order tensors, where they regularise the representations of time steps by enforcing temporal smoothing, i.e. by learning similar transformation for adjacent timestamps. However, the impact of the choice of temporal regularisation terms is still poorly understood. In this work, we systematically analyse several choices of temporal smoothing regularisers using linear functions and recurrent architectures. In our experiments, we show that by carefully selecting the temporal smoothing regulariser and regularisation weight, a simple method like TNTComplEx can produce significantly more accurate results than state-of-the-art methods on three widely used temporal link prediction datasets. Furthermore, we evaluate the impact of a wide range of temporal smoothing regularisers on two state-of-the-art temporal link prediction models. Our work shows that simple tensor factorisation models can produce new state-of-the-art results using newly proposed temporal regularisers, highlighting a promising avenue for future research.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube