Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Rethinking STS and NLI in Large Language Models (2309.08969v2)

Published 16 Sep 2023 in cs.CL

Abstract: Recent years have seen the rise of LLMs, where practitioners use task-specific prompts; this was shown to be effective for a variety of tasks. However, when applied to semantic textual similarity (STS) and natural language inference (NLI), the effectiveness of LLMs turns out to be limited by low-resource domain accuracy, model overconfidence, and difficulty to capture the disagreements between human judgements. With this in mind, here we try to rethink STS and NLI in the era of LLMs. We first evaluate the performance of STS and NLI in the clinical/biomedical domain, and then we assess LLMs' predictive confidence and their capability of capturing collective human opinions. We find that these old problems are still to be properly addressed in the era of LLMs.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.