Papers
Topics
Authors
Recent
2000 character limit reached

ODSum: New Benchmarks for Open Domain Multi-Document Summarization (2309.08960v1)

Published 16 Sep 2023 in cs.CL

Abstract: Open-domain Multi-Document Summarization (ODMDS) is a critical tool for condensing vast arrays of documents into coherent, concise summaries. With a more inter-related document set, there does not necessarily exist a correct answer for the retrieval, making it hard to measure the retrieving performance. We propose a rule-based method to process query-based document summarization datasets into ODMDS datasets. Based on this method, we introduce a novel dataset, ODSum, a sophisticated case with its document index interdependent and often interrelated. We tackle ODMDS with the \textit{retrieve-then-summarize} method, and the performance of a list of retrievers and summarizers is investigated. Through extensive experiments, we identify variances in evaluation metrics and provide insights into their reliability. We also found that LLMs suffer great performance loss from retrieving errors. We further experimented methods to improve the performance as well as investigate their robustness against imperfect retrieval. We will release our data and code at https://github.com/yale-nlp/ODSum.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.