Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

V2CE: Video to Continuous Events Simulator (2309.08891v2)

Published 16 Sep 2023 in cs.CV and cs.AI

Abstract: Dynamic Vision Sensor (DVS)-based solutions have recently garnered significant interest across various computer vision tasks, offering notable benefits in terms of dynamic range, temporal resolution, and inference speed. However, as a relatively nascent vision sensor compared to Active Pixel Sensor (APS) devices such as RGB cameras, DVS suffers from a dearth of ample labeled datasets. Prior efforts to convert APS data into events often grapple with issues such as a considerable domain shift from real events, the absence of quantified validation, and layering problems within the time axis. In this paper, we present a novel method for video-to-events stream conversion from multiple perspectives, considering the specific characteristics of DVS. A series of carefully designed losses helps enhance the quality of generated event voxels significantly. We also propose a novel local dynamic-aware timestamp inference strategy to accurately recover event timestamps from event voxels in a continuous fashion and eliminate the temporal layering problem. Results from rigorous validation through quantified metrics at all stages of the pipeline establish our method unquestionably as the current state-of-the-art (SOTA).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. Y. Sandamirskaya, M. Kaboli, J. Conradt, and T. Celikel, “Neuromorphic computing hardware and neural architectures for robotics,” Science Robotics, vol. 7, no. 67, p. eabl8419, 2022.
  2. A. Z. Zhu, N. Atanasov, and K. Daniilidis, “Event-based feature tracking with probabilistic data association,” in 2017 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2017, pp. 4465–4470.
  3. H. Li and J. Stueckler, “Tracking 6-dof object motion from events and frames,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 14 171–14 177.
  4. M. Gehrig and D. Scaramuzza, “Recurrent vision transformers for object detection with event cameras,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 13 884–13 893.
  5. W. Chamorro, J. Solà, and J. Andrade-Cetto, “Event-imu fusion strategies for faster-than-imu estimation throughput,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 3975–3982.
  6. S. A. Baby, B. Vinod, C. Chinni, and K. Mitra, “Dynamic vision sensors for human activity recognition,” in 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR).   IEEE, nov 2017. [Online]. Available: https://doi.org/10.1109%2Facpr.2017.136
  7. M. Gehrig, W. Aarents, D. Gehrig, and D. Scaramuzza, “Dsec: A stereo event camera dataset for driving scenarios,” IEEE Robotics and Automation Letters, vol. 6, pp. 4947–4954, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:232170230
  8. H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, “High speed and high dynamic range video with an event camera,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, pp. 1964–1980, 2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:189998802
  9. F. Mahlknecht, D. Gehrig, J. Nash, F. M. Rockenbauer, B. Morrell, J. Delaune, and D. Scaramuzza, “Exploring event camera-based odometry for planetary robots,” IEEE Robotics and Automation Letters, vol. 7, pp. 8651–8658, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:248119129
  10. H. Seok and J. Lim, “Robust feature tracking in dvs event stream using bézier mapping,” 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1647–1656, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:214676285
  11. Y.-T. Dong and T. Zhang, “Standard and event cameras fusion for feature tracking,” Proceedings of the 2021 International Conference on Machine Vision and Applications, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:236435673
  12. L. Pan, M. Liu, and R. I. Hartley, “Single image optical flow estimation with an event camera,” 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1669–1678, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:214743326
  13. P. Bardow, A. J. Davison, and S. Leutenegger, “Simultaneous optical flow and intensity estimation from an event camera,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 884–892, 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID:10280488
  14. Z. Zhang, K. Chai, H. Yu, R. Majaj, F. Walsh, E. Wang, U. Mahbub, H. Siegelmann, D. Kim, and T. Rahman, “Neuromorphic high-frequency 3d dancing pose estimation in dynamic environment,” Neurocomputing, vol. 547, p. 126388, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0925231223005118
  15. P. Liu, G. Chen, Z. Li, D. Clarke, Z. Liu, R. Zhang, and A. Knoll, “Neurodfd: Towards efficient driver face detection with neuromorphic vision sensor,” in 2022 International Conference on Advanced Robotics and Mechatronics (ICARM), 2022, pp. 268–273.
  16. H. Rebecq, D. Gehrig, and D. Scaramuzza, “Esim: an open event camera simulator,” in Proceedings of The 2nd Conference on Robot Learning, ser. Proceedings of Machine Learning Research, A. Billard, A. Dragan, J. Peters, and J. Morimoto, Eds., vol. 87.   PMLR, 29–31 Oct 2018, pp. 969–982. [Online]. Available: https://proceedings.mlr.press/v87/rebecq18a.html
  17. D. Gehrig, M. Gehrig, J. Hidalgo-Carrió, and D. Scaramuzza, “Video to events: Recycling video datasets for event cameras,” in IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), June 2020.
  18. Y. Hu, S. C. Liu, and T. Delbruck, “v2e: From video frames to realistic DVS events,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).   IEEE, 2021. [Online]. Available: http://arxiv.org/abs/2006.07722
  19. A. Z. Zhu, Z. Wang, K. Khant, and K. Daniilidis, “Eventgan: Leveraging large scale image datasets for event cameras,” 2019.
  20. Y. Jiang, Y. Wang, S. Li, Y. Zhang, M. Zhao, and Y. Gao, “Event-based low-illumination image enhancement,” IEEE Transactions on Multimedia, pp. 1–12, 2023.
  21. L. Liu, J. An, J. Liu, S. Yuan, X. Chen, W. Zhou, H. Li, Y. Wang, and Q. Tian, “Low-light video enhancement with synthetic event guidance,” 2022.
  22. F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural network model,” IEEE Transactions on Neural Networks, vol. 20, pp. 61–80, 2009. [Online]. Available: https://api.semanticscholar.org/CorpusID:206756462
  23. S. Schaefer, D. Gehrig, and D. Scaramuzza, “Aegnn: Asynchronous event-based graph neural networks,” 2022.
  24. D. Sun and H. Ji, “Event-based object detection using graph neural networks,” in 2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS), 2023, pp. 1895–1900.
  25. L. Yijin, Z. Han, Y. Bangbang, C. Zhaopeng, B. Hujun, and Z. Guofeng, “Graph-based asynchronous event processing for rapid object recognition,” in International Conference on Computer Vision (ICCV), October 2021.
  26. A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. Maida, “Deep learning in spiking neural networks,” Neural networks : the official journal of the International Neural Network Society, vol. 111, pp. 47–63, 2018. [Online]. Available: https://api.semanticscholar.org/CorpusID:5039751
  27. S.-W. Deng, Y. Li, S. Zhang, and S. Gu, “Temporal efficient training of spiking neural network via gradient re-weighting,” ArXiv, vol. abs/2202.11946, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:247084286
  28. L. Cordone, B. Miramond, and S. Ferrante, “Learning from event cameras with sparse spiking convolutional neural networks,” 2021.
  29. L. Zhu, X. Wang, Y. Chang, J. Li, T. Huang, and Y. Tian, “Event-based video reconstruction via potential-assisted spiking neural network,” 2022.
  30. A. Z. Zhu, D. Thakur, T. Özaslan, B. Pfrommer, V. Kumar, and K. Daniilidis, “The multivehicle stereo event camera dataset: An event camera dataset for 3d perception,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2032–2039, 2018.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Zhongyang Zhang (11 papers)
  2. Shuyang Cui (3 papers)
  3. Kaidong Chai (2 papers)
  4. Haowen Yu (3 papers)
  5. Subhasis Dasgupta (25 papers)
  6. Upal Mahbub (12 papers)
  7. Tauhidur Rahman (18 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.