Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

MHLAT: Multi-hop Label-wise Attention Model for Automatic ICD Coding (2309.08868v1)

Published 16 Sep 2023 in cs.CL and cs.AI

Abstract: International Classification of Diseases (ICD) coding is the task of assigning ICD diagnosis codes to clinical notes. This can be challenging given the large quantity of labels (nearly 9,000) and lengthy texts (up to 8,000 tokens). However, unlike the single-pass reading process in previous works, humans tend to read the text and label definitions again to get more confident answers. Moreover, although pretrained LLMs have been used to address these problems, they suffer from huge memory usage. To address the above problems, we propose a simple but effective model called the Multi-Hop Label-wise ATtention (MHLAT), in which multi-hop label-wise attention is deployed to get more precise and informative representations. Extensive experiments on three benchmark MIMIC datasets indicate that our method achieves significantly better or competitive performance on all seven metrics, with much fewer parameters to optimize.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.