Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Trajectory Tracking Control of Skid-Steering Mobile Robots with Slip and Skid Compensation using Sliding-Mode Control and Deep Learning (2309.08863v2)

Published 16 Sep 2023 in cs.RO, cs.AI, cs.SY, and eess.SY

Abstract: Compensating for slip and skid is crucial for mobile robots navigating outdoor terrains. In these challenging environments, slipping and skidding introduce uncertainties into trajectory tracking systems, potentially compromising the safety of the vehicle. Despite research in this field, having a real-world feasible online slip and skid compensation remains challenging due to the complexity of wheel-terrain interaction in outdoor environments. This paper proposes a novel trajectory tracking technique featuring real-world feasible online slip and skid compensation at the vehicle level for skid-steering mobile robots operating outdoors. The approach employs sliding-mode control to design a robust trajectory tracking system, accounting for the inherent uncertainties in this type of robot. To estimate the robot's slipping and undesired skidding and compensate for them in real-time, two previously developed deep learning models are integrated into the control-feedback loop. The main advantages of the proposed technique are that it (1) considers two slip-related parameters for the entire robot, as opposed to the conventional approach involving two slip components for each wheel along with the robot's skidding, and (2) has an online real-world feasible slip and skid compensator, reducing the tracking errors in unforeseen environments. Experimental results demonstrate a significant improvement, enhancing the trajectory tracking system's performance by over 27%.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.