Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Subgroup and Coset Intersection in abelian-by-cyclic groups (2309.08811v2)

Published 15 Sep 2023 in math.GR and cs.DM

Abstract: We consider two decision problems in infinite groups. The first problem is Subgroup Intersection: given two finitely generated subgroups $\langle \mathcal{G} \rangle, \langle \mathcal{H} \rangle$ of a group $G$, decide whether the intersection $\langle \mathcal{G} \rangle \cap \langle \mathcal{H} \rangle$ is trivial. The second problem is Coset Intersection: given two finitely generated subgroups $\langle \mathcal{G} \rangle, \langle \mathcal{H} \rangle$ of a group $G$, as well as elements $g, h \in G$, decide whether the intersection of the two cosets $g \langle \mathcal{G} \rangle \cap h \langle \mathcal{H} \rangle$ is empty. We show that both problems are decidable in finitely generated abelian-by-cyclic groups. In particular, we reduce them to the Shifted Monomial Membership problem (whether an ideal of the Laurent polynomial ring over integers contains any element of the form $Xz - f,\; z \in \mathbb{Z} \setminus {0}$). We also point out some obstacles for generalizing these results from abelian-by-cyclic groups to arbitrary metabelian groups.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)