Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Vocabulary-level Memory Efficiency for Language Model Fine-tuning (2309.08708v2)

Published 15 Sep 2023 in cs.CL

Abstract: The extensive memory footprint of LLM (LM) fine-tuning poses a challenge for both researchers and practitioners. LMs use an embedding matrix to represent extensive vocabularies, forming a substantial proportion of the model parameters. While previous work towards memory-efficient fine-tuning has focused on minimizing the number of trainable parameters, reducing the memory footprint of the embedding matrix has yet to be explored. We first demonstrate that a significant proportion of the vocabulary remains unused during fine-tuning. We then propose a simple yet effective approach that leverages this finding to minimize memory usage. We show that our approach provides substantial reductions in memory usage across a wide range of models and tasks. Notably, our approach does not impact downstream task performance, while allowing more efficient use of computational resources.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.