Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

VERSE: Virtual-Gradient Aware Streaming Lifelong Learning with Anytime Inference (2309.08227v2)

Published 15 Sep 2023 in cs.LG, cs.AI, and cs.CV

Abstract: Lifelong learning or continual learning is the problem of training an AI agent continuously while also preventing it from forgetting its previously acquired knowledge. Streaming lifelong learning is a challenging setting of lifelong learning with the goal of continuous learning in a dynamic non-stationary environment without forgetting. We introduce a novel approach to lifelong learning, which is streaming (observes each training example only once), requires a single pass over the data, can learn in a class-incremental manner, and can be evaluated on-the-fly (anytime inference). To accomplish these, we propose a novel \emph{virtual gradients} based approach for continual representation learning which adapts to each new example while also generalizing well on past data to prevent catastrophic forgetting. Our approach also leverages an exponential-moving-average-based semantic memory to further enhance performance. Experiments on diverse datasets with temporally correlated observations demonstrate our method's efficacy and superior performance over existing methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.