Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dynamic Visual Semantic Sub-Embeddings and Fast Re-Ranking (2309.08154v2)

Published 15 Sep 2023 in cs.CV and cs.IR

Abstract: The core of cross-modal matching is to accurately measure the similarity between different modalities in a unified representation space. However, compared to textual descriptions of a certain perspective, the visual modality has more semantic variations. So, images are usually associated with multiple textual captions in databases. Although popular symmetric embedding methods have explored numerous modal interaction approaches, they often learn toward increasing the average expression probability of multiple semantic variations within image embeddings. Consequently, information entropy in embeddings is increased, resulting in redundancy and decreased accuracy. In this work, we propose a Dynamic Visual Semantic Sub-Embeddings framework (DVSE) to reduce the information entropy. Specifically, we obtain a set of heterogeneous visual sub-embeddings through dynamic orthogonal constraint loss. To encourage the generated candidate embeddings to capture various semantic variations, we construct a mixed distribution and employ a variance-aware weighting loss to assign different weights to the optimization process. In addition, we develop a Fast Re-ranking strategy (FR) to efficiently evaluate the retrieval results and enhance the performance. We compare the performance with existing set-based method using four image feature encoders and two text feature encoders on three benchmark datasets: MSCOCO, Flickr30K and CUB Captions. We also show the role of different components by ablation studies and perform a sensitivity analysis of the hyperparameters. The qualitative analysis of visualized bidirectional retrieval and attention maps further demonstrates the ability of our method to encode semantic variations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.