Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Low-rank Tensor Train Decomposition Using TensorSketch (2309.08093v1)

Published 15 Sep 2023 in math.NA and cs.NA

Abstract: Tensor train decomposition is one of the most powerful approaches for processing high-dimensional data. For low-rank tensor train decomposition of large tensors, the alternating least squares (ALS) algorithm is widely used by updating each core tensor alternatively. However, it may suffer from the curse of dimensionality due to the large scale of subproblems. In this paper, a novel randomized proximal ALS algorithm is proposed for low-rank tensor train decomposition by using TensorSketch, which allows for efficient implementation via fast Fourier transform. The theoretical lower bounds of sketch size are estimated for approximating the optimal value of subproblems. Numerical experiments on synthetic and real-world data also demonstrate the effectiveness and efficiency of the proposed algorithm.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.