Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient online update of model predictive control in embedded systems using first-order methods (2309.07996v2)

Published 14 Sep 2023 in eess.SY, cs.SY, and math.OC

Abstract: Model Predictive Control (MPC) is typically characterized for being computationally demanding, as it requires solving optimization problems online; a particularly relevant point when considering its implementation in embedded systems. To reduce the computational burden of the optimization algorithm, most solvers perform as many offline operations as possible, typically performing the computation and factorization of its expensive matrices offline and then storing them in the embedded system. This improves the efficiency of the solver, with the disadvantage that online changes on some of the ingredients of the MPC formulation require performing these expensive computations online. This article presents an efficient algorithm for the factorization of the key matrix used in several first-order optimization methods applied to linear MPC formulations, allowing its prediction model and cost function matrices to be updated online at the expense of a small computational cost. We show results comparing the proposed approach with other solvers from the literature applied to a linear time-varying system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. D. Arnström, A. Bemporad, and D. Axehill, “A dual active-set solver for embedded quadratic programming using recursive LDLT𝑇{}^{T}start_FLOATSUPERSCRIPT italic_T end_FLOATSUPERSCRIPT updates,” IEEE Transactions on Automatic Control, vol. 67, no. 8, pp. 4362–4369, 2022.
  2. A. Domahidi, A. U. Zgraggen, M. N. Zeilinger, M. Morari, and C. N. Jones, “Efficient interior point methods for multistage problems arising in receding horizon control,” in 51st IEEE Conference on Decision and Control (CDC), 2012, pp. 668–674.
  3. T. Skibik and M. M. Nicotra, “Analysis of time-distributed model predictive control when using a regularized primal–dual gradient optimizer,” IEEE Control Systems Letters, vol. 7, pp. 235–240, 2023.
  4. R. Halvgaard, L. Vandenberghe, N. K. Poulsen, H. Madsen, and J. B. Jørgensen, “Distributed model predictive control for smart energy systems,” IEEE Transactions on Smart Grid, vol. 7, no. 3, pp. 1675–1682, 2016.
  5. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends® in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.
  6. A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202, 2009.
  7. P. Giselsson, “Improved fast dual gradient methods for embedded model predictive control,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 2303–2309, 2014.
  8. D. Kouzoupis, H. J. Ferreau, H. Peyrl, and M. Diehl, “First-order methods in embedded nonlinear model predictive control,” in European Control Conference (ECC), 2015, pp. 2617–2622.
  9. P. Zometa, M. Kögel, T. Faulwasser, and R. Findeisen, “Implementation aspects of model predictive control for embedded systems,” in American Control Conference (ACC), 2012, pp. 1205–1210.
  10. P. Krupa, D. Limon, and T. Alamo, “Implementation of model predictive control in programmable logic controllers,” IEEE Transactions on Control Systems Technology, vol. 29, no. 3, pp. 1117–1130, 2021.
  11. P. Krupa, O. Inverso, M. Tribastone, and A. Bemporad, “Certification of the proximal gradient method under fixed-point arithmetic for box-constrained QP problems,” Automatica, vol. 159, 2024.
  12. B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP: An operator splitting solver for quadratic programs,” Mathematical Programming Computation, vol. 12, no. 4, pp. 637–672, 2020.
  13. B. O’Donoghue, “Operator splitting for a homogeneous embedding of the linear complementarity problem,” SIAM Journal on Optimization, vol. 31, pp. 1999–2023, August 2021.
  14. M. Garstka, M. Cannon, and P. Goulart, “COSMO: A conic operator splitting method for convex conic problems,” Journal of Optimization Theory and Applications, vol. 190, no. 3, pp. 779–810, 2021.
  15. J. Bokor and G. Balas, “Linear parameter varying systems: A geometric theory and applications,” IFAC Proceedings Volumes, vol. 38, no. 1, pp. 12–22, 2005, 16th IFAC World Congress.
  16. G. Tao, “Multivariable adaptive control: A survey,” Automatica, vol. 50, no. 11, pp. 2737–2764, 2014.
  17. P. Patrinos and A. Bemporad, “An accelerated dual gradient-projection algorithm for embedded linear model predictive control,” IEEE Transactions on Automatic Control, vol. 59, no. 1, pp. 18–33, 2014.
  18. P. Krupa, I. Alvarado, D. Limon, and T. Alamo, “Implementation of model predictive control for tracking in embedded systems using a sparse extended ADMM algorithm,” IEEE Transactions on Control Systems Technology, vol. 30, no. 4, pp. 1798–1805, 2022.
  19. P. Krupa, “Implementation of MPC in embedded systems using first order methods,” Ph.D. dissertation, University of Seville, 2021, available at arXiv:2109.02140.
  20. E. Bernardi, H. A. Pipino, and E. J. Adam, “Full-order output observer applied to a linear parameter varying system with unknown input,” in IEEE Congreso Bienal de Argentina (ARGENCON), 2020, pp. 1–8.
  21. P. Krupa, V. Gracia, D. Limon, and T. Alamo, “Spcies: Suite of predictive controllers for industrial embedded systems,” 2020. [Online]. Available: https://github.com/GepocUS/Spcies
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Victor Gracia (3 papers)
  2. Pablo Krupa (17 papers)
  3. Teodoro Alamo (28 papers)
  4. Daniel Limon (26 papers)

Summary

We haven't generated a summary for this paper yet.