Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Viewpoint Textual Inversion: Discovering Scene Representations and 3D View Control in 2D Diffusion Models (2309.07986v2)

Published 14 Sep 2023 in cs.CV, cs.AI, and cs.LG

Abstract: Text-to-image diffusion models generate impressive and realistic images, but do they learn to represent the 3D world from only 2D supervision? We demonstrate that yes, certain 3D scene representations are encoded in the text embedding space of models like Stable Diffusion. Our approach, Viewpoint Neural Textual Inversion (ViewNeTI), is to discover 3D view tokens; these tokens control the 3D viewpoint - the rendering pose in a scene - of generated images. Specifically, we train a small neural mapper to take continuous camera viewpoint parameters and predict a view token (a word embedding). This token conditions diffusion generation via cross-attention to produce images with the desired camera viewpoint. Using ViewNeTI as an evaluation tool, we report two findings: first, the text latent space has a continuous view-control manifold for particular 3D scenes; second, we find evidence for a generalized view-control manifold for all scenes. We conclude that since the view token controls the 3D `rendering' viewpoint, there is likely a scene representation embedded in frozen 2D diffusion models. Finally, we exploit the 3D scene representations for 3D vision tasks, namely, view-controlled text-to-image generation, and novel view synthesis from a single image, where our approach sets state-of-the-art for LPIPS. Code available at https://github.com/jmhb0/view_neti

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube