Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improving Multimodal Classification of Social Media Posts by Leveraging Image-Text Auxiliary Tasks (2309.07794v2)

Published 14 Sep 2023 in cs.CL, cs.LG, and cs.SI

Abstract: Effectively leveraging multimodal information from social media posts is essential to various downstream tasks such as sentiment analysis, sarcasm detection or hate speech classification. Jointly modeling text and images is challenging because cross-modal semantics might be hidden or the relation between image and text is weak. However, prior work on multimodal classification of social media posts has not yet addressed these challenges. In this work, we present an extensive study on the effectiveness of using two auxiliary losses jointly with the main task during fine-tuning multimodal models. First, Image-Text Contrastive (ITC) is designed to minimize the distance between image-text representations within a post, thereby effectively bridging the gap between posts where the image plays an important role in conveying the post's meaning. Second, Image-Text Matching (ITM) enhances the model's ability to understand the semantic relationship between images and text, thus improving its capacity to handle ambiguous or loosely related modalities. We combine these objectives with five multimodal models across five diverse social media datasets, demonstrating consistent improvements of up to 2.6 points F1. Our comprehensive analysis shows the specific scenarios where each auxiliary task is most effective.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 36 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube