Papers
Topics
Authors
Recent
2000 character limit reached

Rates of Convergence in Certain Native Spaces of Approximations used in Reinforcement Learning (2309.07383v4)

Published 14 Sep 2023 in eess.SY, cs.LG, and cs.SY

Abstract: This paper studies convergence rates for some value function approximations that arise in a collection of reproducing kernel Hilbert spaces (RKHS) $H(\Omega)$. By casting an optimal control problem in a specific class of native spaces, strong rates of convergence are derived for the operator equation that enables offline approximations that appear in policy iteration. Explicit upper bounds on error in value function and controller approximations are derived in terms of power function $\mathcal{P}_{H,N}$ for the space of finite dimensional approximants $H_N$ in the native space $H(\Omega)$. These bounds are geometric in nature and refine some well-known, now classical results concerning convergence of approximations of value functions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.