Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Rates of Convergence in Certain Native Spaces of Approximations used in Reinforcement Learning (2309.07383v4)

Published 14 Sep 2023 in eess.SY, cs.LG, and cs.SY

Abstract: This paper studies convergence rates for some value function approximations that arise in a collection of reproducing kernel Hilbert spaces (RKHS) $H(\Omega)$. By casting an optimal control problem in a specific class of native spaces, strong rates of convergence are derived for the operator equation that enables offline approximations that appear in policy iteration. Explicit upper bounds on error in value function and controller approximations are derived in terms of power function $\mathcal{P}_{H,N}$ for the space of finite dimensional approximants $H_N$ in the native space $H(\Omega)$. These bounds are geometric in nature and refine some well-known, now classical results concerning convergence of approximations of value functions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.