Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Traffic Management Framework for On-Demand Urban Air Mobility Systems (2309.07139v2)

Published 1 Sep 2023 in cs.NI, cs.MA, cs.RO, cs.SY, eess.SY, math.OC, and math.PR

Abstract: Urban Air Mobility (UAM) offers a solution to current traffic congestion by providing on-demand air mobility in urban areas. Effective traffic management is crucial for efficient operation of UAM systems, especially for high-demand scenarios. In this paper, we present a centralized traffic management framework for on-demand UAM systems. Specifically, we provide a scheduling policy, called VertiSync, which schedules the aircraft for either servicing trip requests or rebalancing in the system subject to aircraft safety margins and energy requirements. We characterize the system-level throughput of VertiSync, which determines the demand threshold at which passenger waiting times transition from being stabilized to being increasing over time. We show that the proposed policy is able to maximize throughput for sufficiently large fleet sizes. We demonstrate the performance of VertiSync through a case study for the city of Los Angeles, and show that it significantly reduces passenger waiting times compared to a first-come first-serve scheduling policy.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.